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Abstract
Lattice Boltzmann simulations are used to model the acoustic streaming
produced by the interaction of an acoustic wave with a boundary. Comparison
is made with analytic results for Rayleigh streaming in the appropriate limits
and we show how deviations from those limits affect the streaming. Acoustic
streaming patterns around a cylinder and between two plates of finite length are
then predicted.

PACS numbers: 6260, 0550, 0570, 4335

1. Introduction

Acoustic streaming describes a steady flow field superimposed upon the oscillatory motion of
a sound wave propagating in a fluid. It is a nonlinear effect which occurs due to the presence
of boundaries or because of damping of the wave.

Acoustic streaming velocities are small compared with the oscillatory fluid motion
(∼0.1%) However, there are reports in the literature that the streaming can enhance rate-
limited processes such as diffusion [1,2], heat transfer [3] and the rate of sonoelectrochemical
reactions [4]. The reasons behind this behaviour are unclear and to understand and control
the enhancement it is important to better characterize the flow fields produced by acoustic
streaming. For a few simple systems acoustic streaming velocities have been determined
analytically. However, for more complex systems, analytical solutions are likely to prove too
difficult, so modelling methodologies need to be found. The aim of this paper is to describe
one such approach, lattice Boltzmann simulations, which predicts acoustic streaming patterns
from a direct solution of the Navier–Stokes equations.

There are two basic types of acoustic streaming. The first, which has received the majority
of attention to date, is Rayleigh or Schlichting streaming. This is caused by relative oscillatory
motion between the fluid and a boundary. The steady flow results from the rapid change in
the wave amplitude in the acoustic boundary layer. The effects of attenuation are usually
considered to be negligible. The second, Eckart streaming, results from the attenuation of the
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wave in the bulk fluid. Here the momentum transfer from the wave is converted into a time-
averaged flow moving away from the source. This is commonly referred to as a ‘quartz wind’
because it was first discovered with the introduction of high-amplitude quartz transducers.

Acoustic streaming was first considered analytically by Rayleigh in 1884 [5]. He
predicted the streaming pattern for a standing wave between two parallel plates. More
recently Nybourg [3] corrected this solution and presented results for the streaming caused by
a travelling wave between plates and for streaming around an infinitely long cylinder.

To date there have been two studies that have modelled acoustic streaming. Nightingale
et al [6] used a standard computational fluid dynamics package to predict the flow produced
in breast cysts by Eckart streaming. The authors used the analogy between streaming and
slow viscous flow [3] to model the streaming as the flow produced by a body force which was
calculated from the time-dependent (first-order) wave. This requires the wave profile to be
known throughout the area of interest and assumes that there are no effects in going from a
stationary to an oscillatory reference frame when performing the streaming calculations.

Stansell et al [7] used a lattice gas approach to model the acoustic streaming produced by
a standing wave between two parallel plates. This is a simulation of the full Navier–Stokes
equations of motion and the acoustic streaming appears as a small correction to the oscillatory
flow field. However, lattice gas simulations are inherently very noisy and streaming could
only be seen for high amplitudes and viscosities. Whilst the results produced similar velocity
profiles to the theoretical predictions there were some noticeable differences, which were
attributed to higher-order contributions. This could not be verified as no theory was available
which included the higher-order terms.

Lattice Boltzmann simulations were developed from the lattice gas approach as an attempt
to overcome noise problems. They can be regarded either as a ‘mean-field’ lattice gas or as a
slightly unusual finite-difference solver for the Navier–Stokes equations [8]. Like the lattice
gas, the lattice Boltzmann approach can be used to simulate streaming without having to
calculate the forces produced by the wave. Once a sound wave is generated in the model
streaming should follow automatically.

Here we demonstrate that this is indeed the case and explore the extent to which lattice
Boltzmann simulations can be used to model acoustic streaming. We show that because there
is no noise present in the lattice Boltzmann model it is possible to see streaming at amplitudes
and viscosities which approach the limits considered in analytic work. This both provides a
useful check on the simulations and shows how acoustic streaming behaves beyond the limits
amenable to analytic calculation.

The next section of the paper introduces the lattice Boltzmann approach and gives details
of the numerical calculations. In section 3 we compare the simulation results for streaming
between two infinite parallel plates with analytical results and show how the streaming changes
as the assumptions inherent in the theory are violated. Section 4 presents the results for
streaming around a cylinder and between plates of finite length.

2. Lattice Boltzmann model

2.1. The algorithm

The lattice Boltzmann model we use is a single-relaxation-time BGK scheme on a two-
dimensional, hexagonal lattice [8]. Lattice vectors are ei = cos{π(i − 1)/3}, i = 1, 2 . . . 6,
together with a zero velocity vector e0 = (0, 0). A set of partial densities fi(x, t) associated
with each lattice direction i is defined on each lattice site x. They evolve with time t according
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to

fi(x + ei
t, t + 
t) − fi(x, t) = − 1

τ
(fi − f 0

i ) (1)

where the local equilibrium distribution

f 0
i = ρ{ 1

12 + 1
3ei · u + 2

3 (ei · u)2 − 1
6 (u)2} i = 1, 2 . . . 6 (2)

f 0
0 = ρ{ 1

2 − (u)2} (3)

and ρ(�x, t) and u(�x, t) are the density and velocity respectively. They are related to the partial
densities by ∑

i

fi(x, t) = ρ(x, t)
∑

i

fi(x, t)ei = ρ(x, t)u(x, t). (4)

In equation (1) the left-hand side represents the propagation step, where momentum is
transferred between lattice points, and the right-hand side represents the relaxation process
which determines the viscous properties of the fluid. In the continuum limit a Chapman–
Enskog expansion shows that the numerical scheme reproduces the Navier–Stokes equation [8]

∂tρ + ∂αρuα = 0 (5)

∂tρuβ + uβ∂αρuα + ρuα∂αuβ = −∂αP + ρν∂α[∂βuα + ∂αuβ] (6)

with pressure P = ρ/4, kinematic viscosity ν = (2τ − 1)/8 and speed of sound c0 = 1/2.

2.2. Choice of parameters

Provided the same values for ∇P and ν are used the absolute value of the density or pressure
in the lattice Boltzmann model or the Navier–Stokes equations has no effect on the flow field
produced. For convenience an undisturbed density ρ0 = 1 was used. The relaxation time for
all the simulations was τ = 0.525 (ν = 0.006 25). This represented the best compromise
between reducing the attenuation of the wave in the model, which is a function of viscosity,
and producing a simulation that contains no numerical oscillation at the second order.

For the model to simulate streaming in a channel appropriate boundary conditions must be
imposed. These are periodic boundary conditions along the channel and non-slip conditions
at the sides of the channel. The non-slip conditions are produced by a standard bounce-back
scheme where mass leaving the system remains at the same site but with its velocity reversed [9].

We considered a channel of length Lx in the direction of propagation of the sound wave and
width Ly (corresponding to 2Ly/

√
3 lattice points) and imposed a sound wave of wavelength

λ = Lx for all the simulations. The theoretical results for streaming between two parallel
plates are obtained in the limits Lx, λ 	 Ly and Ly 	 β−1 where β−1 is the width of the
acoustic boundary layer. Moreover attenuation of the standing wave is assumed to be negligible.
Satisfying all these conditions simultaneously presents a problem for the simulation.

For a long thin channel the boundary conditions at the wall significantly increase the
attenuation. A model with a high aspect ratio and low attenuation will require a very large
lattice, typically Lx ∼ 8000, Ly ∼ 692.8, which will be computationally expensive.

To reduce the attenuation it is necessary to use a channel width that is much closer to
the wavelength or possibly wider. Therefore as a compromise four lattice sizes have been
considered: two (Lx = 1000, Ly = 86.6; Lx = 200, Ly = 86.6) to investigate the effect
of the aspect ratio of the lattice and two (Lx = 540, Ly = 433; Lx = 270, Ly = 138.6) to
simulate waves with a relatively low attenuation. The 540 by 433 lattice model took 24 h to
run on a single-processor R10000 workstation.
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2.3. The first-order standing wave

Acoustic streaming occurs at second order in the wave amplitude. In the simulations presented
here the first-order velocity of the sound wave is of the order of 1000 times the streaming
velocity. One of the consequences of this is that a small change in first-order wave will have a
profound effect on the values obtained for the streaming. It is therefore essential that the wave
is maintained in a stable condition throughout the simulation.

The theory of acoustic streaming assumes the first-order sound wave has sufficient
amplitude to produce the nonlinear effect of streaming, whilst other nonlinear effects, such
as the generation of higher harmonics and shock fronts, can be ignored. However, when
waves of sufficient amplitudes to generate significant streaming velocities propagate in lattice
Boltzmann models nonlinear propagation effects will be important [10]. This will lead to the
sound wave taking on a saw-tooth form, which contains a significant number of harmonics
which are not accurately represented by the theory. To avoid this the wave was maintained
by imposing a sinusoidal pressure variation at Lx = 0 by a suitable choice of the partial
distribution functions at each time step. This ensured the wave remained linear and at the
correct amplitude because x = 0 effectively acted as the source of the wave and did not allow
any reflections of the returning wave.

3. Analytical results for streaming between parallel plates

Consider a standing wave of wavevector k = 2π/λ and frequency ω in a channel of infinite
length along the x-direction and width Ly along the y-direction. The Navier–Stokes equations
can be solved to first order in the wave velocity u1 to give a standing wave solution [3] for the
x and y components of velocity

u1x = U1 sin kx{sin(ωt) − e−βy sin(ωt − βy)}
u1y = U1k√

2β
cos kx

{
sin

(
ωt − π

4

)
− e−βy sin

(
ωt − βy − π

4

)}
0 � y � Ly/2

(7)

where β−1 = √
2ν/ω is the width of the acoustic boundary layer, U1 is the magnitude of the

velocity amplitude as β → ∞ and the solution for Ly/2 < y < Ly follows by symmetry.
These expressions are derived under the assumptions that β−1 � Ly, λ. Moreover it is

assumed that the derivatives of the velocity with respect to x are negligible compared with the
y-derivatives. This is a good assumption within the boundary layer. However, it leads to the
non-physical result that u1y = 0 at the centre of the channel. This is unlikely to affect the
streaming significantly as u1y � u1x .

Equations (7) can be used to obtain the second-order terms in the amplitude expansion.
The time-averaged components of these for the net mass flow are the streaming velocity as
seen by a tracer particle [3]

u2x = 3U 2
1

8c
sin 2kx

{
e−2βy + 2e−βy sin βy + 6

y

Ly

(
1 − y

Ly

)
− 1 +

18y

βL2
y

(
y

Ly

− 1

)}
(8)

u2y = 3U 2
1 k

8βc
cos 2kx

{
e−2βy + e−βy(sin βy + cos βy)

+2β

(
1 − 2y

Ly

)(
1 − y

Ly

)
+ 6

(
y

Ly

)2(
3 − 2y

Ly

)
− 3

}
(9)

where c is the speed of sound in the fluid.
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4. Comparison of theory and simulation

4.1. First-order wave

We first compare the form of the standing wave set up in the channel with the theoretical
predictions (7). Results are shown for a lattice of size Lx = 200, Ly = 86.6. The wave was
initialized as ρ = ρ0 + �ρ1 cos(kx), u = 0 with �ρ1 = 0.01.

Figures 1(a) and (b) show the variation of u1x and u1y with y at their velocity antinodes.
In the centre of the channel the simulated velocity u1x is lower than the calculated value by
∼2%. This is likely to be due to attenuation of the wave (∼3% over one cycle, primarily due
to the boundaries), which will lead to a reduction in velocities at the antinodes. To check this
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Figure 1. First-order wave velocity at the velocity antinode. (a) x component; (b) y component
(Lx = 200, Ly = 86.6, τ = 0.525, �ρ = 0.01, y′ = 2y/

√
3). The solid curve is the simulation;

the theory is the dashed curve.
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Figure 2. Acoustic streaming velocity vector plot (Lx = 200, Ly = 86.6, τ = 0.525, �ρ = 0.01).

we obtained similar results for a lattice of length Lx = 1000. Here the attenuation is ∼7%
and the discrepancy between theory and simulation increased to ∼5%. The variation of the
velocity through the boundary layer is reproduced well by the simulations.

The simulated and calculated values for u1y are similar in the boundary layer. Moving
towards the centre away from the boundaries they diverge because the simulations give the
correct value u1y = 0 at the centre of the channel. Note, however, that the magnitude of u1y

is small everywhere and it is unlikely to significantly affect the streaming.

4.2. Streaming

Acoustic streaming is the local velocity averaged over one period of the sound wave. However,
to increase the sensitivity in all of the following simulations the streaming velocity has been
taken as the average velocity over 50 cycles, after an initialization period of 200 cycles to allow
streaming to reach a steady state.

Figure 2 shows the velocity field for acoustic streaming for a channel of width Ly = 86.6
and Lx = 200. As expected there are two series of vortices with period λ/2 lying symmetrically
about the centre of the channel. There is a local maximum close to the y = 0 boundary due
to the high first-order velocity gradient in this area. The ratio of streaming velocities to the
oscillatory velocity of the standing waves ∼2 × 10−3.

Details of the velocity field are compared with the theoretical predictions for three different
lattice sizes (Lx = 1000, Ly = 86.6; Lx = 200, Ly = 86.6, and Lx = 560, Ly = 433) in
figures 3, 4 and 5 respectively. In each case the variation of u2x and u2y with y is plotted at a
velocity antinode (the maximum velocity, which occurs at x = λ/4 for u2y and x = λ/8 for
u2x). We stress that exact agreement cannot be expected because the theoretical assumptions
are not exactly reproduced in the model. However, by comparing different lattice sizes we can
check that the right behaviour is seen as the simulations approach the theoretical limits and
present new results showing how the streaming behaves for parameter values inaccessible to
the theory.

Consider first (Lx = 1000, Ly = 86.6). This aspect ratio is the closest to the theoretical
limit λ 	 Lx and the numerical results lie close to the theoretical curves. Away from the
boundary the model gives a slightly lower value than the theory. This is likely to be due to the
attenuation (∼7% per cycle) which reduces the amplitude of the standing wave. One of the
theoretical assumptions is that x-derivatives are negligible compared with y-derivatives. For
this aspect ratio we measure ∂u1/∂x ∼ 1% ∂u1/∂y and ∂u2/∂x ∼ 5%∂u2/∂y.

The simulations reproduce the streaming velocity in the boundary layer surprisingly well
given the large changes over a small number of lattice sites. The build-up of the velocity
happens slightly closer to the boundary in the simulations. At first sight this looks like an
inaccuracy caused by errors in the bounce-back non-slip boundary conditions. However,
when the results were compared with those produced by a scheme that ensures zero velocity
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Figure 3. Acoustic streaming at the velocity antinode: (a) x-component; (b) y-component
(Lx = 1000, Ly = 86.6, τ = 0.525, �ρ = 0.01, y′ = 2y/

√
3). The solid curve is the simulation;

the theory is the dashed curve.

exactly at the boundary [11] there was no difference in the accuracy. Close examination of the
theoretical prediction shows a small reversal in the direction of the streaming velocity close to
the boundary. This change is not present in the simulation presented here and is the most likely
explanation of the displacement of the simulation velocity from the theoretical velocity profiles.
The absence of the change in direction could be due to the number of nodes close to the boundary
not being sufficient to model this change (the change is only over three nodes) or it could be a
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Figure 4. Acoustic streaming at the velocity antinode: (a) x-component; (b) y-component
(Lx = 200, Ly = 86.6, τ = 0.525, �ρ = 0.01, y′ = 2y/

√
3). The solid curve is the simulation;

the theory is the dashed curve.

non-physical artefact of the mathematical solution. The most likely explanation is the former,
as the velocity reversal is seen in the lattice gas simulation [7], though it is greatly exaggerated.

As the width of the channel approaches the wavelength of the standing wave the theoretical
approximations will break down and a numerical result is needed. Figures 4 and 5 shows the
acoustic streaming velocities for (Lx = 200, Ly = 86.6) and (Lx = 540, Ly = 433)
respectively. They are reduced, both in the boundary layer and the centre of the channel,
compared with the analytical predictions. If the theoretical analysis is used to analyse the
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Figure 5. Acoustic streaming at the velocity antinode: (a) x-component, (b) y-component
(Lx = 540, Ly = 433, τ = 0.525, �ρ = 0.01, y′ = 2y/

√
3). The solid curve is the simulation;

the theory is the dashed curve.

effect of acoustic streaming on rate processes such as diffusion or heat transfer it is likely to
overpredict the convective effects as Lx/Ly → 1.

The acoustic streaming profiles produced in the model take a finite time to become
established. For a standing wave amplitude of �ρ1 = 0.01 it takes ∼250 cycles before
the streaming is fully established. If the amplitude is reduced to �ρ1 = 0.001, more than
500 cycles are required. Streaming simulations are also feasible for �ρ1 = 10−4 although the
time required to establish streaming is again increased.
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Figure 6. Velocity vector plot of acoustic streaming produced by two thin plates of length 300
lattice points 50 < x < 350, y = 43.3 and y = 129.9 on a lattice with Lx = 400, Ly = 173.2
(τ = 0.525, �ρ = 0.01). (a) Near the end of a plate; (b) in the centre of the plates.

5. Streaming around obstacles

The previous sections have shown that lattice Boltzmann simulations can be used to accurately
model acoustic streaming between two parallel plates. This type of streaming is caused by the
change in the amplitude of the wave in the boundary layer when it comes into contact with a
boundary. Therefore the approach can be extended to modelling the streaming pattern round
obstacles in a sound field with any shape that can be reproduced by the lattice. Two examples
are presented. The first is the streaming pattern round two thin parallel plates of finite length.
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Figure 7. Velocity vector plot of acoustic streaming produced round a 20-lattice-point diameter
cylinder on a hexagonal mesh: (a) far field; (b) flow close to the cylinder (Lx = 400, Ly =
173.2, τ = 0.525, �ρ = 0.01).

The second is the streaming pattern round a cylinder where an analytical result exists [3]. In
both simulations the same standing wave field was used as before. The lattice was taken to
be periodic in the y-direction and the boundaries of the obstacles were modelled as non-slip
using the bounce-back scheme.

Figure 6 shows the streaming profile produced between two parallel thin plates in a
standing wave sound field. For this simulation Lx = 400, Ly = 173.2 and the plates lie
at 50 < x < 350, y = 43.3 and y = 129.9. To simplify the model the ends of the plate
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were pointed following the profile of the lattice, allowing a smooth entry into the channel. As
expected the streaming profile between the plates is essentially the same as for the infinitely
long plates considered in section 3. However, at the entrance the angle of the plates produces
rotational streaming patterns similar to those seen round cylinders or round a hexagon for
thicker plates.

Figure 7 shows the streaming profile round a cylinder of radius 20 lattice points. Away
from the boundary the simulation correctly predicts the four outer vortices as described by
Nyborg [3]. However, close to the boundary there are a large number of vortices which result
from the sharp edges produced by the lattice approximation to the smooth cylinder. To correct
this the boundary conditions need to be modified to more accurately follow the shape of the
cylinder [12].

6. Conclusions

In this paper we have shown that lattice Boltzmann simulations can be used to model acoustic
streaming which arises from the interaction between a sound wave and a stationary boundary.
Like the lattice gas approach, the lattice Boltzmann approach simulates the full Navier–Stokes
equations. Therefore once the correct boundary conditions are implemented and a sound wave
is imposed streaming is generated automatically. However, using the lattice Boltzmann rather
than a lattice gas approach it is possible to produce simulations which are much closer to the
theoretical limits. To demonstrate this we have simulated the acoustic streaming produced
by a standing wave confined between infinite plates and compared the results to an analytical
solution presented by Nyborg.

We have shown that as the relative dimensions of the channel move away from the
theoretical limit to a channel width close to the wavelength the streaming velocities both
inside and outside the acoustic boundary layer are significantly lower than that predicted by
theory, the velocity outside the boundary layer having the greater reduction. This leads to a
streaming pattern where the centres of the vortices are closer to the boundary than predicted by
the theory. Combined with the overall reduction in velocity this is likely to have a significant
impact on predicting the effect of streaming on processes such as diffusion.

Finally we have shown that lattice Boltzmann simulations can be used to simulate
streaming round any obstacle which can be represented on the lattice. This was demonstrated
by simulating the streaming produced by two plates of finite length (not equal to the wavelength)
and a lattice approximation to an infinitely long cylinder.

Having established that lattice Boltzmann simulations can accurately predict Rayleigh
streaming it would be interesting to extend the method to include a second species to examine
the effect of streaming on diffusion rates in an attempt to understand the physics behind
reports of steady enhanced diffusion. Another interesting direction is to examine the streaming
produced by the interaction of the sound wave with a bubble suspended in the sound field. It
has been suggested that bubbles can produce large streaming velocities, which can damage
cellular tissue [13].
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